Categories

Disclaimer

De meningen ge-uit door medewerkers en studenten van de TU Delft en de commentaren die zijn gegeven reflecteren niet perse de mening(en) van de TU Delft. De TU Delft is dan ook niet verantwoordelijk voor de inhoud van hetgeen op de TU Delft weblogs zichtbaar is. Wel vindt de TU Delft het belangrijk - en ook waarde toevoegend - dat medewerkers en studenten op deze, door de TU Delft gefaciliteerde, omgeving hun mening kunnen geven.

Japan and the Next Step for Disaster Preparedness

Modern technology saved thousands of lives Friday. Now we need to improve care for urban survivors.

This article by Julian Hunt and Simon Day appeared in the Wall Street Journal on Monday, March 14, 2011. Lord Hunt is visiting professor at Delft University of Technology and former director-general of the UK Met Office. Mr. Day is a researcher at the Aon Benfield Hazard Research Centre at University College London.

The 8.9 magnitude earthquake that struck Japan on Friday is the largest to hit the country in recorded history. It has numerous similarities, in both type and scale, to the 8.5 magnitude quake which struck Japan in 1896. Around 27,000 people are estimated to have been killed by that quake and the subsequent tsunami, which was some 25 meters high. In this case, the death toll could far exceed 1,000, most of those victims to the tsunami.

While that toll is tragically high, it is worth noting the scientific, technological and institutional developments that will have kept Friday’s earthquake and tsunami from claiming as many victims as previous disasters did. We now have a better understanding of the linkage between geophysical processes and detection technology, and have improved the education of, and communication to, at-risk communities.

All this is an undeniable mercy in allowing so many more people to survive such disasters than would have been possible before. But it also poses a new challenge for policy makers, one that came into focus over the weekend in Japan and that ought to be on the minds of disaster planners elsewhere: how best to care for hundreds of thousands, or even millions, of survivors who are dislocated by a severe natural disaster.

Japan shows how complex this question has become. Providing drinking water, food and shelter to those affected has become a major logistical challenge. Hundreds of thousands of Tokyo residents who live miles away from their houses and depend on modern urban transportation systems to get home each evening found themselves stuck in office buildings ill equipped to handle them.

This is a significant consequence of modern urbanization. The proportion of the world’s population living in urban areas is expected to reach between 60% and 70% later this century, from around 50% now. Japan is the epitome of this: Only 5% of the population works in agriculture (a proxy for rural residence), and around 80 million of Japan’s 127 million people are concentrated on the Pacific shore of Honshu island—the region that includes Tokyo.

Simultaneously, there is a movement toward very large cities with populations exceeding one million. In 1950, there were only 83 cities in the world of such a size, whereas this number had risen to 468 by 2007. There are now some 21 "mega cities" of greater than 10 million inhabitants—Tokyo is one of those.

The high concentration of people per square meter in urban areas, anywhere from 100 to 1,000 times the global average, can make populations more vulnerable to extreme natural hazards ranging from earthquakes to heat waves and floods. Even a localized disaster in a city can affect exponentially more people than a disaster hitting a similar land area in the countryside; the effect is magnified further for a region-wide disaster such as Friday’s earthquake.

The growing size of many urban areas also means that people sometimes cannot physically escape in the event of extreme hazards, as recent hurricanes and tsunamis in the United States and Indonesia have shown. Where attempts have been made to evacuate multi-million populations, lives have sometimes been lost in the transport systems as they seized up.

This means policy makers and architects face the question of how to provide refuge for those people during and after a disaster, and how those refuges should be integrated into the design of structures. The problem is much more difficult than simply building a bunker in the basement. Refuges have different roles for different types of disaster. For tsunamis, a shelter is usually only needed for a short period, as with high winds, tropical cyclones and landslides. For longer lasting disasters, such as volcanic eruptions, people have longer warning, and behave differently (for instance, bringing goods and even animals to the shelters in rural areas).

Regulators and engineers are only starting to grapple with this kind of question, but already some points are clear. Increasingly, communities in urban areas will have to understand and be prepared for risks of hazards and need to be involved in addressing them, in partnership with local and national government. This will involve training communities to deal with a range of potential natural disasters relevant to their local areas.

Structural engineers, planners and social scientists will also need to consider more urgently the design of appropriate shelters in urban and also in rural areas (for instance, parks and open areas may also act as refuges). This will require intensive study and resources to ensure good design and effectiveness. Careful study of unfolding events in Japan could help this effort over the long run.

The complexity of policies that are needed for dealing with these issues may be hard to envisage, and even harder to carry out. However, change is urgently needed and the longer we wait, the harder it will become to achieve and the more lives that will be lost.

Be Sociable, Share!

Leave a Reply

© 2011 TU Delft